Enhanced collisionless shock formation in a magnetized plasma containing a density gradient.
نویسندگان
چکیده
Two-dimensional hybrid simulations of super-Alfvénic expanding debris plasma interacting with an inhomogeneous ambient plasma are presented. The simulations demonstrate improved collisionless coupling of energy to the ambient ions when encountering a density gradient. Simulations of an expanding cylinder running into a step function gradient are performed and compared to a simple analytical theory. Magnetic flux probe data from a laboratory shock experiment are compared to a simulation with a more realistic debris expansion and ambient ion density. The simulation confirms that a shock is formed and propagates within the high density region of ambient plasma.
منابع مشابه
Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory.
We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M_{ms}≈12. Particle-in-c...
متن کاملOn the generation of magnetized collisionless shocks in the large plasma device
Collisionless shocks are common phenomena in space and astrophysical systems, and in many cases, the shocks can be modeled as the result of the expansion of a magnetic piston though a magnetized ambient plasma. Only recently, however, have laser facilities and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of piston-driven shocks. ...
متن کاملTwo-dimensional Full Particle Simulation of a Perpendicular Collisionless Shock with a Shock-rest-frame Model
A two-dimensional (2D) shock-rest-frame model for particle simulations is developed. Then full kinetic dynamics of a perpendicular collisionless shock is examined by means of a 2D full particle simulation. We found that in the 2D simulation there are fewer nonthermal electrons due to surfing acceleration which was seen in the previous 1D simulations of a high Mach number perpendicular shock in ...
متن کاملTwo-dimensional Full Particle Simulation of Perpendicular Collisionless Shock with a Shock-rest-frame Model
A two-dimensional (2D) shock-rest-frame model for particle simulations is developed. Then full kinetic dynamics of a perpendicular collisionless shock is examined by means of a 2D full particle simulation. We found that in the 2D simulation there is less non-thermal electrons due to surfing acceleration which was seen in the previous 1D simulations of a high-Mach-number perpendicular shock in a...
متن کاملExperimental study of subcritical laboratory magnetized collisionless shocks using a laser-driven magnetic piston
Recent experiments at the University of California, Los Angeles have successfully generated subcritical magnetized collisionless shocks, allowing new laboratory studies of shock formation relevant to space shocks. The characteristics of these shocks are compared with new data in which no shock or a pre-shock formed. The results are consistent with theory and 2D hybrid simulations and indicate t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 90 4 شماره
صفحات -
تاریخ انتشار 2014